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57 ABSTRACT

Real-time high-fidelity spatiotemporal data on transportation
networks can be used to learn about traffic behavior at differ-
ent times and locations, potentially resulting in major savings
in time and fuel. Real-world data collected from transporta-
tion networks can be used to incorporate the data’s intrinsic
behavior into a time-series mining technique to enhance its
accuracy for traffic prediction. For example, the spatiotem-
poral behaviors of rush hours and events can be used to
perform a more accurate prediction of both short-term and
long-term average speed on road-segments, even in the pres-
ence of infrequent events (e.g., accidents). Taking historical
rush-hour behavior into account can improve the accuracy of
traditional predictors by up to 67% and 78% in short-term and
long-term predictions, respectively. Moreover, the impact of
an accident can be incorporated to improve the prediction
accuracy by up to 91%.
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1
TRAFFIC PREDICTION USING
REAL-WORLD TRANSPORTATION DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority from U.S.
Provisional Application entitled “Utilizing Real-World
Transportation Data for Accurate Traffic Prediction”, filed
Oct. 23, 2012, Application Ser. No. 61/717,574, the disclo-
sure of which is incorporated by reference in its entirety.

STATEMENT AS TO FEDERALLY SPONSORED
RESEARCH

This invention was made with government support under
National Science Foundation (NSF) grant number
1IS-1115153. The government has certain rights in the inven-
tion.

BACKGROUND

This specification relates to traffic prediction for road net-
works.

The two most important commodities of the 21st century
are time and energy; traffic congestion wastes both. Several
disciplines, such as in transportation science, civil engineer-
ing, policy planning, and operations research have studied the
traffic congestion problem through mathematical models,
simulation studies and field surveys. However, due to the
recent sensor instrumentations of road networks in major
cities as well as the vast availability of auxiliary commodity
sensors from which traffic information can be derived, e.g.,
CCTV (closed-circuit television) cameras, GPS (global posi-
tioning system) devices, for the first time a large volume of
real-time traffic data at very high spatial and temporal reso-
Iutions has become available. While this is a gold mine of
data, the most popular utilization of this data is to simply
visualize and utilize the current real-time traffic congestion
on online maps, car navigation systems, sig-alerts, or mobile
applications. However, the most useful application of this
data is to predict the traffic ahead of you during the course of
a commute. This predictive information can be either used by
a driver directly to avoid potential gridlocks or consumed by
a smart route-planning algorithm to ensure a driver picks the
best route from the start. Using traffic information that avoids
congestion can potentially save consumers substantial
amounts of time and money.

SUMMARY

In the past, several statistics, machine learning and data
mining approaches have been applied to traffic data for pre-
diction purposes, such as auto-regression, neural net and
smoothing techniques (see S. Lee et al., “Application of sub-
set autoregressive integrated moving average model for short-
term freeway traffic volume forecasting”, J. van Lint et al.,
“Freeway travel time prediction with State-Space neural net-
works”, and B. Williams et al., “Urban freeway traffic flow
prediction: Application of seasonal autoregressive integrated
moving average and exponential smoothing models”). How-
ever, in this paper, a very pragmatic approach is described to
evaluate and then enhance these techniques by intensely
studying a very large-scale and high-resolution spatiotempo-
ral transportation data from the Los Angeles County road
network. This dataset includes traffic flows recorded by
under-pavement loop detectors as well as police reports on

15

20

30

40

45

50

55

2

accidents and events. In some implementations, a system
acquires these datasets in real time from various agencies
such as Caltrans, City of Los Angeles Department of Trans-
portation (LADOT), California Highway Patrol (CHP), Long
Beach Transit (LBT), Foothill Transit (FHT) and LA Metro.
In some implementations, a main source can include approxi-
mately 8000 traffic loop-detectors located on the highways
and arterial streets of Los Angeles County (covering 3420
miles, cumulatively) collecting several main traffic param-
eters such as occupancy, volume, and speed at the rate of 1
reading per 30 secs. However, even though this paper focuses
on the sensor data collected from loop detectors, the systems
and techniques described can be applied to other data collec-
tion approaches. For example, GPS data between regions can
be aggregate (see J. Yuan ete al., “Driving with knowledge
from the physical world”), and the links between regions can
be considered as sensors in some implementations.

Working with real-world data, we have identified certain
characteristics of traffic data, such as temporal patterns of
rush hours or the spatial impacts of accidents, which can be
incorporated into a data-mining technique to make it much
more accurate. For example, for generic time-series, the
observations made in the immediate past are usually a good
indication of the short-term future. However, for traffic
timeseries, this is not true at the edges of the rush hours. In that
case, the historical observations (perhaps for that same day,
time, and location) can be better predictors of the future.
Hence, an auto-regression algorithm such as ARIMA (see G.
Box et al., “Time series analysis: Forecasting and control”),
which by itself cannot capture sudden changes at the temporal
boundaries of rush hours, can be enhanced by incorporating
historical patterns.

While predicting the short-term future has many applica-
tions, for example in fixing the errors of sig-alerts during
rush-hours, it is not useful for smart path-planning where
sometimes we need to know the traffic of a road-segment
ahead of us by 30 minutes in advance. Again, historical data
can improve long-term predictions because most probably
the traffic behavior in 30 minutes at the desired location is
similar to (say) yesterday’s traffic at the same time and loca-
tion. In this case, again ARIMA alone cannot be as effective
since it only looks at immediate past and not the right subset
of'the historical patterns.

Unfortunately, even an enhanced ARIMA cannot predict
accidents. However, if we know, e.g., from police event
streams, that there is an accident (say, 30 minutes) ahead of
us, we may be able to predict its delays and account for it.
Again, historical data can be used to identify similar acci-
dents, i.e., with similar severity, similar location and during
the similar time, so that we can use their impact on average
speed changes and backlog to predict the behavior of the
accident in front of us. For example, our study shows that an
accident that may happen between 4:00 pm and 8:00 pmon a
particular segment of Interstate 5 (I-5) can cause 5.5 miles of
average backlog ahead of the accident location. On the other
hand, if the same accident happens between 8:00 pm and
midnight the backlog will be 2.5 miles.

The main challenge is how to properly incorporate all the
knowledge from historical and real-time data into an appro-
priate time-series mining technique. This is exactly what has
been accomplished in this paper by enhancing ARIMA. Our
experimental results with real-world LA data show that our
enhanced ARIMA can outperform ARIMA by 78% when
there is no unexpected events, and over 91% in the presence of
events. Inaddition, we compared our enhanced approach with
other competitor techniques used for traffic prediction and
showed the superiority of our approach.
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Traditional prediction approaches are analyzed herein
based on a real-world dataset, and their limitations are dis-
covered at boundaries of rush hours, or in long term predic-
tion. To overcome such limitations, we propose a hybrid
approach that utilizes both historical traffic patterns and cur-
rent traffic speed for prediction. We also propose feature
selection model(s) to analyze the correlations between meta-
attributes of traffic incidents (from event reports) and their
impact areas (from traffic data). Later, we incorporate this
model into the hybrid traffic prediction approach to predict
traffic in the presence of incidents. Further, we evaluate our
approaches with real-world traffic data and event reports col-
lected from transportation agencies, to show remarkable
improvement in terms of prediction accuracy as compared
with traditional traffic prediction approaches, especially at
the boundaries of rush hours and at the beginning of unex-
pected traffic events, and for long term prediction.

In general, an aspect of the subject matter described in this
specification can be embodied in a method that includes the
actions of: receiving a request relating to traffic prediction,
the request having an associated day and an associated time;
determining how much to apply each of a first traffic predic-
tion model and a second traffic prediction model based on
previously recorded traffic data corresponding to the associ-
ated day and the associated time, wherein the first traffic
prediction model includes a moving average model that
exhibits increased prediction accuracy as a prediction time
horizon is reduced, and the second traffic prediction model
includes a historical average model that exhibits similar pre-
diction accuracy across multiple prediction time horizons;
and applying the first and second traffic prediction models in
accordance with the determining to generate an output foruse
in relation to traffic prediction. Other embodiments of this
aspect include corresponding systems, apparatus, and com-
puter program products.

For example a system can include a user interface device
and one or more computers operable to interact with the user
interface device, where the one or more computers include at
least one processor and at least one memory device, and the
one or more computers are configured and arranged to per-
form operations of the method(s). The one or more computers
can include a server operable to interact with the user inter-
face device through a data communication network, and the
user interface device can be operable to interact with the
server as a client. The user interface device can include a
mobile phone. In addition, the one or more computers can
include one personal computer, and the personal computer
can include the user interface device.

These and other embodiments can optionally include one
or more of the following features. The determining can
include: calculating a first prediction error for the first traffic
prediction model and a second prediction error for the second
traffic prediction model; and selecting between use of the first
traffic prediction model and the second traffic prediction
model based on the first prediction error and the second
prediction error. The calculating can be based on a time and
time horizon associated with the request. Moreover, the deter-
mining can include identifying the corresponding traffic data
by identifying a subset of previously recorded traffic data that
exhibits similar traffic conditions on a specific day of week,
month or season that matches the associated day for the
request.

The method(s) can include: receiving information regard-
ing an event that has one or more attributes that are correlated
with reduction in traffic flow on one or more roads of a road
network approaching the event; calculating an influenced
speed change and an influenced time shift, for a sensor asso-
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ciated with the road network, based on the information
regarding the event (e.g., including start time, location, direc-
tion, and severity of the event as compared with similar his-
torical events); and using the influenced speed change and the
influenced time shift in application of the first traffic predic-
tion model. Calculating the influenced speed change and the
influenced time shift can includes calculating based on
attributes for the event including (i) start time, (ii) location,
(iii) direction, (iv) event type, and (v) affected lanes.

The previously recorded traffic data can include data
derived from mobile sensor data. The method(s) can include
generating the derived data by performing operations includ-
ing: calculating speeds for multiple mobile sensors from
mobile sensor data with respect to connected road segments
in a road network; and generating a speed for a road segment
of'the connected road segments by calculating an aggregation
of all speeds calculated for mobile sensors passing the road
segment at a given time. In addition, the mobile sensor data
can be obtained from public transit vehicles.

According to another aspect of the subject matter described
in this specification, a method of predicting traffic on a road
network in view of an event having an identified time and an
identified location in the road network, where the method
includes the actions of: retrieving attributes from past events
on the road network; selecting a subset of the attributes that
are correlated with traffic parameters including delayed traf-
fic speeds, affected backlogs of vehicles, and amounts of time
needed to clear backlogs of vehicles; discovering correspond-
ing values for the traffic parameters under all combinations of
the selected attributes; matching current attributes for the
event in the road network to previous event attributes using
the corresponding values for the traffic parameters to identify
a subset of the past events; and using the identified time, the
identified location, and the subset of the past events to predict
(1) a delayed traffic speed for the event, (ii) an affected back-
log of vehicles on one or more roads approaching the event in
the road network, and (iii) an amount of time needed for the
affected backlog of vehicles to be cleared in the road network.
Other embodiments of this aspect include corresponding sys-
tems, apparatus, and computer program products.

These and other embodiments can optionally include one
or more of the following features. The selected attributes can
include (i) start time, (ii) location, (iii) direction, (iv) event
type, and (v) affected lanes. The past events can include
accidents, vehicle breakdowns, scheduled or unscheduled
road closures or construction, emergencies, and social events,
including concert and sporting events. The method(s) can
include predicting traffic on the road network using previ-
ously recorded traffic data including data derived from
mobile sensor data, and the method(s) can include generating
the derived data by performing operations including: calcu-
lating speeds for multiple mobile sensors from mobile sensor
data (e.g., obtained from public transit vehicles) with respect
to connected road segments in a road network; and generating
a speed for a road segment of the connected road segments by
calculating an aggregation of all speeds calculated for mobile
sensors passing the road segment at a given time.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows an effect of prediction horizon when com-
paring auto-regressive integrated moving average and histori-
cal average models of traffic prediction.

FIG. 1B shows an effect of rush-hour boundaries for auto-
regressive integrated moving average and historical average
models of traffic prediction.
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FIG. 2 shows an example of a hybrid traffic prediction
process.

FIGS. 3A and 3B show effects of prediction horizons over
an average of a decision parameter for a hybrid forecasting
model.

FIG. 4A shows an example of the behavior of the decision
parameter over time.

FIG. 4B shows an example of historical average speed (in
miles per hour) to reveal effects of rush-hour boundaries over
the decision parameter.

FIG. 5 shows an example of speed predictions from two
techniques for a traffic accident as compared with the actual
speed.

FIG. 6 shows a definition of impact post-mile.

FIGS. 7A and 7B plot average one-step prediction accura-
cies over a weekday for a rush hour time interval and a
non-rush hour time interval, respectively.

FIGS. 8A-9B show actual speed and mean absolute percent
error of predictions on two different road segments of I-5 and
1-10.

FIGS. 10A and 10B show root mean square error in miles
per hour (mph) predictions for a rush hour time interval and a
non-rush hour time interval, respectively.

FIGS. 11A and 11B show the actual speed and mean abso-
lute percent error, respectively, of predictions on road seg-
ments of I-10.

FIGS.12A and 12B show data and predictions for a sample
sensor located on east bound of CA-91 affected by three
traffic collision events on Dec. 7, 2011.

FIGS. 13A and 13B show data and predictions for a 6-hour
long road construction event which happened in 1-405.

FIG. 14 shows a comparison of speed predictions gener-
ated by mobile sensors with speeds reported by static sensors
for an HOV (High Occupancy Vehicle) lane.

DETAILED DESCRIPTION

The previous traffic prediction approaches can be grouped
in two main categories: Simulation Models and Data Mining
Techniques. Some traffic prediction techniques fall into the
first category and use surveys and/or simulation models. For
example, S. Clark, “Traffic prediction using multivariate non-
parametric regression”, proposes a non-parametric regres-
sion model to predict traffic based on the observed traffic data.
In other cases, authors use microscopic models upon trajec-
tories of individual vehicles to simulate overall traffic data
and further conduct prediction (see J. D. Gehrke et al., “A
natural induction approach to traffic prediction for autono-
mous agent-based vehicle route planning”, and M. Ben-akiva
et al., “DynaMIT: a simulation-based system for traffic pre-
diction”). In another case, the traffic flow of a road segment is
estimated by analyzing taxi trajectories. The major limitation
of such studies is that they rely on sporadic observations and
are often restricted to synthetic or simplified data for simula-
tions.

Some traffic prediction techniques fall into the second cat-
egory and use data mining techniques. The increase in the
availability of real-time traffic has allowed researchers to
develop and apply data mining techniques to forecast traffic
based on real-world datasets. Since the early 1980s, univari-
ate time series models, mainly Box-Jenkins Auto-Regressive
Integrated Moving Average (ARIMA) (see G. Box et al.,
“Time series analysis: Forecasting and control”) and Holt-
Winters Exponential Smoothing (ES) models (see R. S.
Marshment et al., “Short-range intercity traffic forecasting
using econometric techniques”, and B. Williams et al.,
“Urban freeway traffic flow prediction: Application of sea-
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sonal autoregressive integrated moving average and exponen-
tial smoothing models™), have been widely used in traffic
prediction. In the last decade, Neural Network (NNet) models
also has been extensively used in forecasting of various traffic
parameters, including speed, travel time, and traffic flow.
Nowadays, ARIMA, ES and NNet models are used as bench-
marking methods for short-term traffic prediction. However,
these approaches consider traffic flow as a simple time-series
data and ignore phenomenons that particularly happen to
traffic data. For example, for generic time-series, the obser-
vations made in the immediate past are usually a good indi-
cation of the short-term future. However, for traffic time-
series, this is not true at the edges of the rush hours, due to
sudden speed changes.

On the other had, traffic event analysis techniques have also
been developed. The effect of events on traffic prediction has
been studied in the fields of data mining and transportation
engineering. Many of these studies focused on realtime event/
outlier detection using probabilistic or rule-based approaches
(seee.g., X. Lietal., “A hidden markov model framework for
traffic event detection using video features”, A. IThler et al.,
“Adaptive event detection with time-varying poisson pro-
cesses”, and X. Li et al.,, “Temporal outlier detection in
vehicle traffic data”). There are also several studies that
mainly concern the cause of the events, aiming at how to
design the network or re-direct the traffic flows to avoid the
delay of events (see e.g., M. M. Chong et al., “Traffic accident
analysis using decision trees and neural networks”, and C.
Tsai et al., “Traffic monitoring and event analysis at intersec-
tion based on integrated multi-video and petri net process”).
However, none of these studies incorporate events into traffic
prediction techniques, and hence fail to provide realistic esti-
mations in the presence of events.

The focus of the present application, on the other hand, is to
integrate the impact of various events into forecasting mod-
els. As apoint of comparison, the model proposed in J. Kwon
et al., “Components of congestion: delay from incidents,
special events, lane closures, weather, potential ramp meter-
ing gain, and excess demand” utilizes a nearest-neighbor
technique to detect cumulative delays and impact regions
caused by traffic incidents. The impact regions are defined
with fixed thresholds. However, the impact of events on traffic
congestion varies based on space and time. For example, the
impact region of an accident occurring during rush hour is
usually more severe. Similarly, an accident at an inter-state
street has a different impact region than that of a surface
street. In the present application, we consider such spatiotem-
poral characteristics of traffic events in training our models.

Problem Definition: consider a set of road segments com-
prising n traffic sensors (e.g., loop detectors). We assume that
at given time interval t (e.g., every minute), each sensor pro-
vides a traffic data reading, e.g., speed v[t]. We formulate the
speed prediction problem as follows:

Definition 1: given a set of observed speed readings V={v,
@,7=1,...,n;j=1, ..., t}, whereiandj denotes a sensor
and continuous time increments, respectively. The pre-
diction problem is to find the set V={vi(j), j=t+1,
t+2, . . . t+h} for each sensor i, where h denotes the
prediction horizon. For example, h=1 refers to predict-
ing the value of speed at t+1, where t represents the
current time.

Definition 2: “short-term prediction” and “long-term pre-
diction” refer to prediction of speed when h=1 and h>1,
respectively.

Two techniques are now introduced as baseline approaches

of a prediction model according to some implementations.
These two techniques are Auto-Regressive Integrated Mov-
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ing Average (ARIMA) and Historical Average Model
(HAM). Implementations using other techniques are also
possible.

The ARIMA model is a generalization of an autoregressive
moving average model with an initial differencing step
applied to remove the non-stationarity of the data. The model
can be formulated as

— 4 4
Yir 2 POY i1+ 2n B, e

M

where {Yt} refers to a time series data (e.g., the sequence of
speed readings). In the autoregressive component of this
model (Z,_70.Y,_,,,), a linear weighted combination of pre-
vious data is calculated, where p refers to the order of this
model and o, refers to the weight of (t—i+1)-th reading. In the
second part (Z,_,78,€,_;,,), the sum of weighted noise from
the moving average model is calculated, where € denotes the
noise, q refers to its order and f3, represents the weight of
(t-i+1)-th noise.

As shown in Equation (1), the predicted value mainly relies
on the linear combination of the data that occurred before
time t. This model can be directly used to predict the traffic
speed data, when prediction horizon h=1. When h>1, we can
iterate the prediction process h times by using the predicted
value as the input to predict the next value.

In addition, our analysis on real-world traffic sensor data
reveals that there is a strong correlation (both temporally and
spatially) present among the measurements of the single and
multiple traffic sensor(s) on road networks. For example, the
traffic condition of a particular road segment on Monday at
8:30 am can be estimated based the average of last four sensor
readings for the same road segment at 8:30 am in the past four
Mondays. Therefore, we introduce Historical average model
(HAM) that uses the average of previous readings for the
same time and location to forecast the future data. We formu-
late HAM as follows:

@

V(g +h) = v(s)

1
v, W)ISE%{W)

where V (d, w) refers to the subset of past observations that
happened at the same time d on the same day w. Specifically,
d captures the daily effects (i.e., the traffic observations at the
same time of the day are correlated), while w captures the
weekly effects (i.e., the traffic observations at the same day of
the week are correlated). For example, if the traffic data to be
predicted is next Monday at 8:00 am, d refers to “8:00 am”,
and w=Mon. Thereby V (d,w) refers to the set of traffic data
that happens on previous Mondays at 8:00 am. In fact, the
selection of historical observations is also relevant with sea-
sonal effects. For example, the historical observations on
Mondays during winter is probably different with that on
Mondays during summer. Here, we eliminate the seasonal
effects by assuming there is no season rotations in our his-
torical observations. Also, as shown in the formula, the func-
tion to select past observations and calculating the average are
indifferent to the value of the prediction horizon h.

One can use either ARIMA or HAM for traffic prediction in
road networks. Here, we explain the limitations of both tech-
niques based on our observations derived from realworld
traffic datasets. Towards that end we present two case studies
using different prediction horizons and temporal scales (i.e.,
rush hour boundaries).

In a first case study, we look at the effect of prediction
horizon (h). We would like to compare the prediction accu-
racy of ARIMA and HAM for different prediction horizons
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using real-world traffic data. Further details regarding the
real-world dataset and experimental setup are provided
below. Note that the aggregation level for this data set in this
first case study is 5 minutes. Our intuition is that ARIMA
relies on very recent traffic data, which are usually a good
indication of the near future. On the other hand, HAM uses
the average of historical data for prediction, and hence HAM
is more accurate in long-term prediction and its accuracy is
independent of the prediction horizon. Our hypothesis can be
summarized as follows:

Hypothesis 1: The prediction horizon has no noticeable
effect on the prediction accuracy of HAM. However, as
the prediction horizon increases, the prediction accuracy
of ARIMA decreases.

The result of comparison using real data is presented in
FIG. 1A in a graph 100, which shows the average mean
absolute percentage error of prediction (y-axis) with respect
to prediction horizon (x-axis). As shown in FIG. 1A, ARIMA
yields better prediction than that of HAM when h<6 (i.e., less
than 30-min in advance prediction). However, as h increases
to the values larger than 6, HAM starts to yield better predic-
tion. This result not only verifies hypothesis 1, but also reveals
that ARIMA is not ideal for long-term predictions (i.e., more
than 30-min in advance prediction).

In a second case study, the effect of rush hour boundaries is
considered. The intuition here is that the observations made in
the immediate past are usually a good indication of the short-
term future. Therefore ARIMA is excepted to yield accurate
prediction in the short-term. However, the speed change at
rush-hour boundaries is sudden and there is no indication
(i.e., trend) of such change before it happens. In such cases,
ARIMA cannot capture the speed changes at the very begin-
ning, but adjusts itself shortly after it takes the changed speed
into account. On the other hand, since rush hours happen at
almost same time of that particular day, HAM can predict the
sudden speed changes at the boundary of rush hours. Our
intuition can be summarized with the following hypothesis:

Hypothesis 2: HAM can efficiently predict the sudden
speed changes at the boundaries (i.e., beginning and
end) of rush hours. On the other hand, ARIMA has a
delayed reaction on the boundaries.

Inthis second case study, we fix the prediction horizon (i.e.,
h=6) and compare the prediction accuracy of both approaches
over time using real-world traffic speed data. The experimen-
tal results are depicted in FIG. 1B in a graph 150, which
represents the actual speed data and predicted values from
two models (HAM and ARIMA) for a specific sensor at
different times of a particular weekday. As shown, in the
morning rush hour around 6:50 am, HAM predicts the begin-
ning of congestion with a very small error rate and ARIMA’s
prediction is shifted (with respect to actual speed) a few
timestamps. Similarly, at the vanishing point of the rush hour
congestions around 9:05 am, HAM still accurately predicts
the after-congestion speed and ARIMA shifts a few times-
tamps. The results show that at the boundaries of rush hours,
HAM vyields higher prediction accuracy than that of ARIMA.
Hence, the Hypothesis 2 is verified.

In view of this, a hybrid forecasting model can be con-
structed, such as an enhanced ARIMA prediction approach.
In some implementations, a hybrid forecasting model named
Historical ARIMA (H-ARIMA) selects in realtime between
ARIMA or HAM based on their accuracy. In particular, as the
traffic data streams arrive, the accuracy of ARIMA and HAM
can be compared, and the one that yields low prediction error
can be selected. As noted, ARIMA relies on recent traffic data,
and hence in some circumstances (i.e., in the long-term when
h=6 and at the boundaries of rush hours) its prediction accu-
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racy degrades significantly. On the other hand, HAM uses
past observations to predict future traffic conditions. While
HAM yields better prediction for long-term, it is not ideal for
short-term predictions. Therefore, the main idea behind this
hybrid approach is to distinguish the circumstances when a
specific approach is better.

Towards that end, a decision-tree model can be trained that
selects between ARIMA and HAM to forecast the speed at
individual time stamps. In this model, the decision parameter
and threshold are denoted as A, and ¢, respectively. For each
time stamp t, we choose between ARIMA and HAM based on
the trained value of A,. If A ¢, we choose ARIMA, otherwise,
we choose HAM. The value of A, is calculated based on the
rate of overall prediction error between HAM and ARIMA at
t. The detailed approach is described in Algorithm 200 in F1G.
2, given the entire training dataset {v(j)} (=1 . . . t), together
with the value of d and w.

In Line 1 of Algorithm 200, we initialize dataset S with all
the historical data observed on day w, at time d. For example,
if w=Mon and d=8:00 am, the set of S refers to all the traffic
speed readings on Mondays at 8:00 am within the training
dataset. In Lines 4-9, we utilize ARIMA and HAM to predict
speed reading v, in S and compute their prediction error. In
Line 10, A is calculated as the ratio of the prediction error
from ARIMA versus the sum of prediction errors from two
approaches. Based on the calculation strategy of A in Algo-
rithm 200, we observe that if A<0.5, the total prediction error
from ARIMA is less than that of HAM, which means ARIMA
is better for this particular time stamp (i.e., time d on day w).
Otherwise, HAM is better. Thereby, we set threshold ¢ as 0.5.

To further explain the robustness of H-ARIMA, we present
the training results for A in the following two main cases.
First, we study the effect of d on A. FIGS. 3A and 3B show in
charts 300 and 340 the effect of d with respect to the average
A from all sensors for two different prediction horizons: h=1
(5 minutes in advance prediction) and h=6 (30 minutes in
advance prediction). Here, the day parameter w is fixed as
Wed. FIG. 3A indicates that in short-term prediction (i.e.,
h=1), the ARIMA yields better performance, because most
average A values are less than 0.5. FIG. 3B shows that when
h=6, there are more time instances with A>0:5. This indicates
that HAM starts to provide better prediction accuracy in the
long term (Hypothesis 1). In addition, both charts 300 and 340
in FIGS. 3A and 3B show that during the morning and after-
noon rush hours (i.e., 6:00 am to 9:00 am, 4:00 pm to 7:00
pm), the accuracy of HAM is not as good as compared to
non-rush hours, reflecting that the average A declines during
the rush-hour interval. One possible explanation is that during
rush hours, the impact of the unexpected events (e.g., acci-
dent) is more significant than that of non-rush hours. Since the
effects of traffic accidents are offset by averaging the entire
history, HAM cannot capture such effects. We will address
this problem in further detail below.

Second, based on the Hypothesis 2, we examine behavior
of'A at the boundaries of rush hours, thereby focusing on the
values of A for a particular sensor. In FIG. 4A, we plot 400
individual A value for a single sensor over all daily time
stamps(d). To analyze the behavior of A over time, the his-
torical average speed sequence is also plotted 450 in FIG. 4B.
Here, the prediction horizon is fixed to h=1, and weekly
parameter w=Wed.

In FIG. 4A, there are three time instances where A>0.5 (i.e.,
6:35 am, 8:55 am and 4:35 pm). As shown in FIG. 4B, those
three time instances are exactly at the boundaries of rush
hours. As indicated, at beginning and ending of the rush
hours, HAM model outperforms ARIMA, even though the
prediction horizon is only 1.

10

15

20

25

30

35

40

45

50

55

60

10

In view of the points made above, the hybrid model can
incorporate the impact of events in order to improve the
prediction accuracy in the presence of events, such as traffic
accidents. Traffic events include non-recurring incidents
(e.g., accident, vehicle breakdown, and unscheduled road
construction) which result in traffic congestion or disruption.
In addition, we can consider social events such as a music
concert at LA Live or Lakers basketball game at Staples
Center. In any case, the effects of such events on traffic con-
gestion in road networks can be taken into consideration. For
example, event information can be incorporated in to
H-ARIMA to enhance the prediction accuracy of the model.
Towards this end, historical event reports and the associated
traffic speed nearby at the time of the events can be exploited
to model the correlation between event attributes and traffic
congestion. Note that even though the model is built offline by
using the past data, the model can be used online for better
traffic prediction. That is, in real-time using the current event
reports as input, the event’s attributes can be matched to find
similar events that happened in the past to predict speed
delays and backlogs, caused by the current event. These delay
predictions can have improved precision and provide quanti-
tative measures of the current event, such as a prediction of a
precise number of minutes (e.g., 7 minutes) of delay as
opposed to a general range of duration for the event (e.g., 30
minute or less versus more than 30 minutes).

As discussed above, HAM can hardly react to unexpected
traffic events as it eliminates the influence of events by aver-
aging historical observations. ARIMA, due to its delayed
reaction, is not an ideal method to use in the case of events
which cause sudden changes in the timeseries data. To illus-
trate the prediction accuracy of ARIMA and HAM in the
presence of an event, consider FIG. 5, which shows the speed
prediction of both techniques for a traffic accident that hap-
pened on freeway CA-91 at 10:53 am Dec. 5, 2011 with
prediction horizon h=6. As shown, the prediction accuracy of
both techniques are significantly low as compared with the
actual speed. Hence, we discuss our Event Impact Area (EIA)
model, which addresses the traffic prediction problem in the
presence of events.

With the EIA, approach event data is used as an input to the
algorithm, and this data can include but is not limited to the
following meta-data: 1) event date, 2) event start-time, 3)
event location (i.e., latitude, longitude), 4) event type (e.g.,
traffic collision, road construction), 5) type of vehicles
involved if incident is an accident, and 6) number of affected
lanes. We note that these information are included in event
data streams that can be collected in a data center (see further
details below). We also introduce a parameter, namely impact
post-mile, to represent the spatial span of an event.

Definition 3: Impact post-mile 630 is the distance between

the location of an event 600 and its last influenced sensor

615 in the opposite direction of vehicle flow, as shown in

FIG. 6.
The influenced sensors 610, 615 are the sensors whose speed
reading show an anomalous decline compared with the his-
torical average speed, whereas the non-influenced sensors
620 do not. In some implementations, the anomalous decline
can be detected using the traffic event detection algorithm
proposed in X. Lietal., “Temporal outlier detection in vehicle
traffic data”. To find such sensors, we use the speed readings
of the sensors ahead of the event location.

Based on our analysis of real-world data, we observe that
impact post-mile 630 varies across events with different
attributes. Let us consider one of the attributes “start time” as
an example. The impact post-mile of events that happen dur-
ing day-time may be large compared with events happening at
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midnight, due to higher traffic flow during the day-time. The
key to investigating the correlation between event attributes
and impact post-mile is to decide which attributes are corre-
lated with impact post-mile. It is likely that some event
attributes are irrelevant or redundant for inferring impact
post-mile 630. In order to identify the most correlated subset
of event attributes, we can first normalize the event attributes
as features and impact post-mile as numerical classes, and
then apply the Correlation based Feature Selection (CFS)
algorithm described in M. A. Hall et al., “Practical feature
subset selection for machine learning” on top of this normal-
ized data to select correlated features. We observe that the
following event attributes are most correlated with impact
post-mile: {Start time, Location, Direction, Type, Affected
Lanes}.

We use the selected attributes to classify the impact post-
mile 630, and utilize the average impact post-mile to repre-
sent the impact of an event. Table I shows some selected
classification results where the impact post-mile under dif-
ferent start-time is aggregated into four hour intervals
denoted as S, ., 1.ourend-now a0d “N/A” means that there is no
such event happening with the attributes specified in our
experimental dataset. When the number of affected lanes
equals zero, this indicates that no lanes are blocked as the
involved vehicles are moved to the shoulder of the road after
the accident. The dataset used to train this model includes the
events that happen on weekdays, when rush-hour is consid-
ered as 6:00 am to 9:00 am and 4:00 pm to 7:00 pm.

TABLE I

AVERAGE IMPACT POST-MILE
ON EVENT META-ATTRIBUTES

Location D So, 4 S4, 8 Ss, 12 Slz, 16 Sls, 20 Szo, 24
(a) Traffic collision event, affected lanes =0
1-405 N 207 293 3.8 2.92 3.33 1.51
1-405 S 0.14 337 261 3.63 4.37 2.03
I-5 N 010 332 412 4.45 5.51 2.56
I-5 S 117 3.66 341 2.43 3.73 1.34
(b) Traffic collision event, affected lanes = 1
1-405 N ©NA NA 474 3.57 3.52 0.46
1-405 S NA NA NA N/A 4.78 1.75
I-5 N NA NA 202 N/A 6.11 N/A
I-5 S 010 N/A NA N/A N/A N/A
(c) Road construction event, affected lanes = 1
1-405 N 096 NA 935 5.02 N/A 1.25
1-405 S 173 NA NA N/A N/A 0.19
I-5 N NA NA 470 5.80 5.70 6.50
I-5 S NA NA NA N/A N/A N/A

From the results shown in Table I, we make the following
observations. First, from Table I(a), we observe that for the
events happening during rush hours, the impact post-mile is
larger than that of non-rush hours. This is expected because
when an accident happens during rush hours on a high occu-
pancy road, the impact of that event is more severe than on
roads without traffic. Second, comparing Table I(a) and I(b),
we infer that for the events happening at similar time, same
location, the impact post-mile is generally larger when the
number of affected lanes is more. Obviously, since the
affected number of lanes reflects the number of lanes which
are blocked by the events, the more lanes blocked, the slower
the traffic flow. However, for accidents that occur at midnight,
since the traffic is free-flow at that time, the higher number of
affected lanes does not necessarily indicate longer impact
post-mile. Third, in Table I(c), we observe that for the road
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construction events, if they happen at day time, especially at
rush hours, their impact on traffic is severe, sometimes excep-
tionally larger than that of traffic collisions happening at the
same time. On the other hand, if they happen at night, their
impact is not that significant.

In addition to impact post-mile, the speed change (speed-
impact) caused by events is also very important for traffic
prediction. To estimate the speed-impact, we introduce two
factors to assist in event impact prediction: influenced speed
change (Av) and influenced time shift (At). We estimate Av
based on the correlated attributes (similar to impact post-
mile).

Definition 4: For sensor i, its influence speed change Av, for
event e is defined as the average speed changes for all
events that share the same correlated attributes (i.e.,
Start-time, Location, Direction, Type and Affected
Lanes) with e, and affected sensor i in the past.

Once we find the influenced speed change, the next step is to
determine the exact time stamps we need to apply the change
on sensors. When an event occurs, the sensors located at
different locations might be influenced at different time
stamps. Therefore, we define the concept of influenced time
shift (At) to estimate the period of time that a sensor will be
affected by an event.

Definition 5: For sensor 1, its influenced time shift (At,) for
event e is defined as the distance between the sensoriand
event e divided by the average traffic speed between
them, which can be represented as follows:

disi(i, e)
avg({v;})

Ag(e) = &

where

pli) = p() < ple)

where p(i) refers to the post-mile of sensor i. The set of {v,}
refers to all the speed readings presented at the sensors
located between sensor i and event e. Below we summarize a
procedure to predict traffic in case of events.

1) When an event e occurs at time t, all the relevant event
features (i.e., {Start-time, Location, Direction, Type,
Affected Lanes}) are incorporated in the EIA model to
determine the impact post-mile of e.

2) Using the impact post-mile and the location of'e, the set
of all influenced sensors are identified as set {s,}.

3) For each sensor s;, during [t+t,(e), t+At,(e)+h], the pre-
dicted value is calculated as (v,(t)-Av,), where h is the
prediction horizon.

4) After time t+At,(e)+h, ARIMA is used to predict the rest
until the event e is cleared.

Using the systems and techniques described above, various
experiments were conducted, the results of which are now
described. The experimental setup included a traffic dataset,
baseline approaches, and fitness measurements. Other imple-
mentations are also possible.

Traffic Dataset: In our research center, we maintain a very
large-scale and high resolution (both spatial and temporal)
traffic loop detector dataset collected from entire LA County
highways and arterial streets. We also collect and store traffic
event data from City of Los Angeles Department of Trans-
portation and California Highway Patrol. The detailed
description of this dataset is shown in Table II.
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TABLE II
DATASET DESCRIPTION

duration Nov. 1st-Dec. 7%, 2011
Sensor Data # of sensors 2028

sensor sampling rate 1 reading per 30 secs

spatial span 3420 miles

aggregation level 5 mins per sensor
Event Data # of events 3255

# of event attributes 43

Baseline Approaches: We implemented ARIMA starting
with stationary verification, followed by the iterations of 1 to
10 for Auto Regressive model and 1 to 10 for Moving Average
model to reach the best combination under Bayesian infor-
mation criteria, such as is described in G. Schwarz, “Estimat-
ing the dimension of a model”. We used the trained model for
one-step (h=1) forecasting. When h>1 (i.e., long-term fore-
casting), we iterate the prediction procedure for h times by
using predicted value as previously observed value.

We implemented an Exponential Smoothing (ES) method
as a special case of ARIMA model, with the order auto-
regressive model set to zero, and the order moving average
model set to 2. In addition, we implemented Neural Network
(NNet) model as multilayer perceptron (MLP). The architec-
ture of MLP is as follows: 10 neurons in the input layer, single
hidden layer with 4 neurons and h output neuron, where h
refers to the prediction horizon. For example, in one-step
forecasting, there is 1 output neuron. The input neurons
include {v(k), k=t-9, . . ., t}, while the output neuron is
{v(t+1) . . . v(t+h)}, where t represents the current time.
Tangent sigmoid function and linear transfer function are
used for activation function in the hidden layer and output
layer, respectively. This model is trained using back-propa-
gation algorithm over the training dataset.

Fitness Measurements: We use mean absolute percent error
(MAPE) and root mean square error (RMSE) to quantify the
accuracy of traffic prediction.

)

N
1 =y,
MAPE:[— E u]xmo
N yi
i=1

RMSE =

where y, and §,, represent actual and predicted traffic speed
respectively, and n represents the number of predictions.

Initially, predictions are made without event information.
In this set of experiments, we used the traffic dataset collected
from November 1 to November 30 as the training set. The
dataset from December 1 to December 7 is used as testing set.
Ina short-term prediction experiment, we evaluated the short-
term prediction (i.e., h=1) accuracy of H-ARIMA with
respectto baseline approaches. FIG. 7A plots 700 the average
one-step prediction accuracy over all sensors on a weekday
for a rush hour time interval. FIG. 7B plots 750, the average
one-step prediction accuracy over all sensors on a weekday
for a non-rush hour time interval. As shown, the accuracy of
all prediction approaches during rush hour are lower than that
of non-rush hours.

Though H-ARIMA outperforms baseline approaches in
general, it does not show clear advantages over them accord-
ing to the aggregated results (over 2028 sensors). However, as
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shown with the following experiment, H-ARIMA does have
significantly better prediction accuracy than baseline
approaches in the boundaries of rush hours. FIGS. 8A-9B
show the actual speed and MAPE of the prediction on two
different road segments of I-5 and I-10. In graph 800 in FIG.
8A, we observe that there is a sudden speed decrease around
14:00. Consequently, as shown in plot 850 in FIG. 8B at
14:15, we observe a significant increase in the prediction
error of baseline approaches. This is because the baseline
approaches cannot detect the sudden speed decrease in
advance. On the other hand, H-ARIMA can estimate the
beginning of congestion from historical pattern and yields
better prediction by improving the baseline approaches up to
67.0% (at 14:15).

Similarly, as shown in plots 900 and 950 in FIGS. 9A and
9B, the morning rush hour of I-10 starts around 7:00 am, and
H-ARIMA outperforms baseline approaches up to 61% (at
7:25 am). We note that this set of experiments focuses on
one-step forecasting where the baseline approaches can
adjust themselves by utilizing the decreased speed, thereby
their prediction accuracy recovers shortly.

In long-term prediction experiments, we compare the pre-
diction accuracy of H-ARIMA with baseline approaches for
h>1. FIGS. 10A and 10B plot at 1000 and 1050 the average
six-step (i.e., h=06) prediction accuracy over all sensors on a
same weekday, for a rush hour time interval and a non-rush
hour time interval, respectively. FIG. 10A shows that when
prediction horizon increases, the prediction errors of baseline
approaches increase, especially during rush hours. In FIG.
10A, we observe that H-ARIMA yields better prediction
accuracy than that of baseline approaches. Similar to one-step
prediction, in the next set of experiment we present the per-
formance of H-ARIMA based on a road segment with rush
hour congestion.

FIGS. 11A and 11B show the actual speed and MAPE,
respectively, of the prediction on road segments of 1-10. As
shown in plot 1100 in FIG. 11A, around 7:00 am, the speed
decreases from 65 mph to 5 mph within a very short time. The
baseline approaches can only sense this change with 30 min-
utes delay, and hence their MAPE is considerably high (see
plot 1150 in FIG. 11B). On the other hand, H-ARIMA utilizes
the historical congestion information to predict the traffic and
hence its MAPE is fairly low as compared to baseline
approaches. In particular, H-ARIMA improves the best base-
line approach 78% (at 7:10 am).

Predictions can also be made with event information. In
this set of experiments, we evaluate the prediction accuracy of
our proposed approach in the case of events, dubbed
H-ARIMA+ (discussed in further detail above). We compare
H-ARIMA+ with H-ARIMA, and the best baseline approach
in multi-step prediction (i.e., NNet). We set the prediction
horizon of all approaches to 6, which indicates that our algo-
rithm is set to predict speed information 30-minute in
advance.

FIGS. 12A and 12B show the result for a sample sensor
located on east bound of CA-91 affected by three traffic
collision events on Dec. 7, 2011. FIG. 12A illustrates at 1200
the actual speed on that day and the historical average (for that
weekday) of the selected sensor. The historical average indi-
cates that the rush hour intervals for this sensor are 7:00 am to
8:00 am, and 3:00 pm to 7:00 pm. FIG. 12B plots 1250 the
prediction error for H-ARIMA+, H-ARIMA, and NNet.
Table III below shows the relevant attributes for each event,
where Dist(e,s) refers to the distance between the sensor and
corresponding event location. The number of affected lanes
equals zero indicates that no lanes are blocked as the involved
vehicles moved to the shoulder of the road after the accident.
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As shown in FIG. 12A at 1200, the first two events (i.e.,
Event 350 and Event 2116) happened at the beginning of
morning and afternoon rush hours, and the last event (i.e.,
Event 2621) happened near the end of the afternoon rush
hour. As illustrated in FIG. 12B at 1250, the prediction accu-
racy of H-ARIMA+ improves the prediction accuracy of
H-ARIMA, NNet by up to 45% and 67%, respectively. We
observe that though H-ARIMA can capture the sudden speed
changes at rush hours, it cannot predict traffic in case of
events. This is because the effect of traffic events are

smoothed in historical averages.

TABLE III

RELEVANT EVENT ATTRIBUTES

Event ID Start Time No. of Affected Lanes Dist(e, s)
350 06:31 0 0.58
2116 16:06 0 0.10
2621 18:26 0 0.11

We also studied the effect of road construction events on
our prediction model. FIGS. 13 A and 13B show the effect of
a 6-hour long road construction event which happened in
1-405 on a specific sensor. There is one lane affected by this
event and the distance between this event and the selected
sensor is 0.23 mile. As shown in FIG. 13A at 1300, the traffic
speed deviates sharply, especially in the first hour of the event.
Similar to traffic collision events, since ARIMA cannot
handle sudden speed changes, and HAM cannot react to
traffic dynamics such as events, the prediction accuracy of
H-ARIMA (which selects between ARIMA and HAM) is
very low at the beginning half an hour. However, H-ARIMA+
utilizes the event information, and yields significantly better
prediction at the beginning of this event by improving
H-ARIMA and NNet by up to 91% (see FIG. 13B at 1350).

A summary of findings is shown in Table IV below. We
measured the overall precision of predictions on all sensors
aggregated through all time stamps in terms of RMSE. As
shown, H-ARIMA outperforms the baseline approaches in
both prediction horizons. Moreover, when h=6, H-ARIMA+
improves the prediction accuracy of H-ARIMA by incorpo-
rating event information.

TABLE IV

RMSE OF ALL SENSOR PREDICTION ON WEEKDAYS

ES ARIMA  NNet  H-ARIMA H-ARIMA+
h=1 3.389 3.235 3.315 3.208 N/A
h=6 5.518 4.545 4.154 4.079 3.937

Further improvements may also be realized by using
mobile sensors, such as public transit GPS data. In addition to
using fixed sensors on road networks for traffic prediction, the
approach described herein can be extended to predict traffic
from the GPS data collected from mobile sensors (e.g., cell
phones, in-car navigation devices, etc.). In this study, we
focus on predicting High Occupancy Vehicle (HOV), ak.a.
carpool lane speed from public transit vehicle (e.g., Bus) GPS
data. To achieve this goal, we propose an approach that trans-
forms GPS data to fixed sensor data for prediction purpose.
This approach has four main components:

1. Map-Matching: We map the raw GPS data on to the road

network using map-matching techniques. Any state-of-
the-art map-matching algorithms, such as described in
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Jing Yuan et al., “An Interactive-Voting based Map
Matching Algorithm”, can be applied here.

2. Route Generation: Since the public transits vehicles
follow predefined routes, based on their mapped road
segments, we can generate the routes as a set of con-
nected road segments.

Bus Speed Calculation: Given two consecutive GPS
data from the bus we compute the bus speed as follows.

dist(, L)
=
Ly =4

where function “dist” calculates the route distance
between two locations on a given route; I, and I, ; arethe
two adjacent GPS locations of; t, and t,, ; are the corre-
sponding time stamp of the GPS locations.

3. Calculation of Vehicle Speed on Road Segments: The
last step calculates the speed for a single bus, this step
focuses on generating the speed for a road segment,
which is calculated as an aggregation of all bus speed
values passing this road segment at a given time.

To evaluate our approach, we conducted a case study on
HOV lanes of I-10 West freeway in city of Los Angeles. In this
case study, we choose one road segment and compare the time
varying speed values generated by our approach to the speed
value reported by the fixed sensors located on the correspond-
ing road segment. There are two speed values reported by the
fixed sensors: main lane speed and HOV lane speed. As
shown in FIG. 14 at 1400, the speed predicted by our
approach from Bus GPS data is fairly close to the speed of the
HOV lane reported by static sensors. As shown, our approach
can be used for speed prediction of HOV lanes utilizing Bus
GPS data. This is particularly useful for the road segments
where static sensor data is not available.

In this paper, we studied a traffic prediction technique that
uses real-world spatiotemporal traffic sensor data on road
networks. We show that the traditional prediction approaches
that treat traffic data streams as generic time series fail to
forecast traffic during traffic peak hours and in the case of
events such as accidents and road constructions. Our algo-
rithm can significantly improve the prediction accuracy of
existing approaches by incorporating the historical traffic
data into the prediction model as well as correlating the event
attributes with traffic congestion. In this paper, we studied the
prediction problem for each sensor individually.

The processes described above, and all of the functional
operations described in this specification, can be imple-
mented in electronic circuitry, or in computer hardware, firm-
ware, software, or in combinations of them, such as the struc-
tural means disclosed in this specification and structural
equivalents thereof, including potentially a program (stored
in a machine-readable medium) operable to cause one or
more programmable machines including processor(s) (e.g., a
computer) to perform the operations described. It will be
appreciated that the order of operations presented is shown
only for the purpose of clarity in this description. No particu-
lar order may be required for these operations to achieve
desirable results, and various operations can occur simulta-
neously or at least concurrently. In certain implementations,
multitasking and parallel processing may be preferable.

The various implementations described above have been
presented by way of example only, and not limitation. Thus,
the principles, elements and features described may be
employed in varied and numerous implementations, and vari-
ous modifications may be made to the described embodi-



US 9,286,793 B2

17

ments without departing from the spirit and scope of the
invention. Accordingly, other embodiments may be within
the scope of the following claims.

What is claimed is:
1. A method of predicting traffic on a road network in view
of'an event having an identified time and an identified location
in the road network, the method comprising:
retrieving attributes from past events on the road network;
selecting, by a processor, a subset of the attributes that are
correlated with traffic parameters comprising delayed
traffic speeds, affected backlogs of wvehicles, and
amounts of time needed to clear backlogs of vehicles;

discovering, by a processor, corresponding values for the
traffic parameters under all combinations of the selected
attributes;

matching, by a processor, current attributes for the event in

the road network to previous event attributes using the
corresponding values for the traffic parameters to iden-
tify a subset of the past events;

using, by a processor, the identified time, the identified

location, and the subset of the past events to predict (i) a
delayed traffic speed for the event, (ii) an affected back-
log of vehicles on one or more roads approaching the
event in the road network, and (iii) an amount of time
needed for the affected backlog of vehicles to be cleared
in the road network; and

providing prediction data to a navigation device for the

road network, the prediction data comprising (i) the
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delayed traffic speed for the event, (ii) the affected back-
log of vehicles, and (iii) the amount of time needed for
the affected backlog of vehicles to be cleared in the road
network.

2. The method of claim 1, wherein the selected attributes
comprise (1) start time, (ii) location, (iii) direction, (iv) event
type, and (v) affected lanes.

3. The method of claim 1, wherein the past events comprise
accidents, vehicle breakdowns, scheduled or unscheduled
road closures or construction, emergencies, and social events,
including concert and sporting events.

4. The method of claim 1, comprising predicting traffic on
the road network using previously recorded traffic data com-
prising data derived from mobile sensor data.

5. The method of claim 4, comprising generating the
derived data by performing operations comprising:

calculating speeds for multiple mobile sensors from

mobile sensor data with respect to connected road seg-
ments in a road network; and

generating a speed for a road segment of the connected

road segments by calculating an aggregation of all
speeds calculated for mobile sensors passing the road
segment at a given time.

6. The method of claim 5, wherein the mobile sensor data
is obtained from public transit vehicles.

7. The method of claim 1, wherein the navigation device
comprises a mobile phone.
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